If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50y^2-225y-7=0
a = 50; b = -225; c = -7;
Δ = b2-4ac
Δ = -2252-4·50·(-7)
Δ = 52025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52025}=\sqrt{25*2081}=\sqrt{25}*\sqrt{2081}=5\sqrt{2081}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-225)-5\sqrt{2081}}{2*50}=\frac{225-5\sqrt{2081}}{100} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-225)+5\sqrt{2081}}{2*50}=\frac{225+5\sqrt{2081}}{100} $
| b=80+(25+7) | | 6u-3u+3u=18 | | 1.2m+4.7-0.9m=-2.3+0.3+7.1 | | -8.75x+14=-5.25=-3.5 | | 2r+4(r+0.75)=6 | | 3(+2)-(2x-4)=-(4x+1) | | 11x-15+3x=7x+6+7 | | 6b^2+42b=0 | | 6x-20+7x-10+105=180 | | 4x/3+5/6=9/12 | | 4(-2x+6)=2x-26 | | (1k+9)=30 | | -112u-9+7u=26 | | 1695+5x=2295+2x | | 2(x+7)+5x=2x-3 | | 6(x+2)-3x=3x+12 | | 2(x+3)-2x=-(x-4)+2 | | 8j-11j+15j-7j=20 | | 4,075=250-150x | | (1)/(2)x-((1)/(2)x+4)+12=17x-6(3x+(5)/(6)) | | -2x-69=6x+51 | | 2/5=12x-6 | | 3.9+10m=7.64 | | -4(p-8)=26-4p | | 21+1.5f=28+2f | | x/5-1=24 | | 17y-17y+2y=4 | | 3(2x-3)=6x-15 | | 8-2x2x=-2 | | 2(x+3)-2x=(x-4)+2 | | 6x-42=98*10x | | 7(7-2x)+6=167 |